x光(X射线)
X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线 之间的电磁波。其波长很短约介于0.01~100埃之间。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。
伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。波长小于0.1埃的称超硬X射线,在0.1~1埃范围内的称硬X射线,1~100埃范围内的称软X射线。
X射线最初用于医学成像诊断和 X射线结晶学。X射线也是游离辐射等这一类对人体有危害的射线。
产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能(其中的1%)会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X光谱中的特征线,此称为特性辐射。
电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线,这是目前实验室和工厂,医院等地方用的产生x射线的方法。
原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁时候会辐射光子,如果能级的能量差比较大,就可以发出x射线波段的光子。
X射线是一种波长极短,能量很大的电磁波,X射线的波长比可见光的波长更短(约在0.001~100纳米,医学上应用的X射线波长约在0.001~0.1纳米之间),它的光子能量比可见光的光子能量大几万至几十万倍。
-
物理特性1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。2、电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。3、荧光作用。X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。这种作用是X射线应用于透视的基础,利用这种荧光作用可制成荧光屏,用作透视时观察X射线通过人体组织的影像,也可制成增感屏,用作摄影时增强胶片的感光量。4、热作用。物质所吸收的X射线能大部分被转变成热能,使物体温度升高。
5、干涉、衍射、反射、折射作用。这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。医学上常用作透视检查,工业中用来探伤。X射线可用电离计、闪烁计数器和感光乳胶片等检测。X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。